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An approximate integral-equation approach is used to model the growth and collapse 
of a vapour cavity in close proximity to an initially plane free surface. By comparison 
with experiment, it is shown to predict all the salient features of the bubble and free- 
surface interaction, provided that the complete nonlinear Bernoulli pressure condition 
is applied on both surfaces. Features observed and predicted include the formation of 
an accelerating liquid jet in the bubble and a pronounced spike in the free surface 
during the collapse phase of the bubble’s life. If the bubble is initially sufficiently close 
to the free surface, it will become ‘entrained’ in the raised free surface with a 
veneer of liquid separating the two free surfaces. 

1. Introduction 
The observation of the growth and subsequent collapse of a vapour cavity (or cavi- 

tation bubble) dates back almost a century, when Osborne Reynolds (1894) noted 
their formation in water flowing through constricted tubes. The bubbles arise because 
of a local lowering of the dynamic pressure below the saturated vapour pressure. 
This phenomenon is most pronounced near propeller or turbo-machinery blades, 
where one might expect high-speed fluid motion. A clear illustration of the formation 
of cavitation bubbles near a ship propeller can be found in Batchelor (1967, plate 16). 
The collapse of vepour bubbles near propeller blades was found, by a special 
commission instituted by the British Admiralty in 1915, to be the prime mechanism 
causing damage to the blades. Rayleigh (1917) considered the growth and collapse 
of a spherical bubble in an infinite fluid and showed that tremendous dynamic 
pressures arise during the collapse phase of the bubble’s life. 

The spherical implosion described by Rayleigh was accepted as the root cause of 
cavitation damage for almost 50 years, until Benjamin & Ellis (1966) and others 
recorded the asymmetric collapse of an initially spherical vapour cavity near a rigid 
boundary. The bubble collapses with a high-speed liquid jet directed towards the 
boundary. Later studies by Gibson (1968) suggested that the physical properties of 
the boundary determined the direction of movement of the liquid jet during the col- 
lapse phase. For example, in some of his experiments the jet was directed away from 
a flexible boundary. The Benjamin & Ellis observations were later predicted theoretic- 
ally by Plesset & Chapman (1971) in their finite-difference solution of the equations 
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of motion. Their calculations predicted maximum jet velocities between 130 and 
180 m/s for physically relevant parameters. These calculations were confirmed ex- 
perimentally by Lauterborn & Bolle (1975). 

Other studies by Shima (1968) and Mitchell & Hammitt (1973), using analytioal 
and numerical approaches respectively, came to similar conclusions to those of Ben- 
jamin & Ellis and Plesset & Chapman concerning the asymmetric collapse of a 
cavitation bubble. An interesting approximate integral-equation approach was used 
by Bevir & Fielding (1974) to model the early stages of the collapse phase of a cavita- 
tion bubble. In  their approach they use a distribution of sources and derivatives (e.g. 
doublets) wholly contained within the bubble and located along the axis of symmetry. 
This method has the advantage that it requires minimal computational effort in com- 
parison to the much more expensive ‘marker and cell’ finite-difference approaches of 
Plesset & Chapman (1971) and Mitchell & Hammitt (1973). Its main disadvantage is 
that the method fails during the latter stages of jet formation. This is due to the de- 
crease in the centre-line length on which the singularities are distributed, so restricting 
the resolution of the surface shape. In the analysis presented in this paper (Q 2), a 
modification of this approach will be used to study the growth and collapse of a bubble 
near a free surface. 

The motivation behind this study stems from the possibility of coating turbo- 
machinery blades with a suitably resilient material so that the jet is directed away 
from the boundary. From the law of Bjerknes (see, for example, Birkhoff & Zaranto- 
nello 1957) concerning the migration of oscillating bubbles near boundaries, it can be 
shown that oscillating bubbles tend to migrate towards rigid boundaries (e.g. a ship 
hull, propeller or sea bottom) and away from a free surface. The migratory behaviour 
near a flexible boundary and the consequential jet motion is not fully understood. 
For example, Gibson (1968) and Gibson & Blake (1980) record results where the bubble 
motion and jet are directed away from a flexible boundary. 

In  a theoretical paper Blake & Cerone (1981) showed that the behaviour of a vapour 
bubble near an inertial boundary with a prescribed mass per unit area depended on 
the value of the parameter a defined by 

a = ph/a .  

Here p is the density of the liquid, h the initial distance of the cavitation bubble from 
the boundary and c the mass per unit area of the boundary. For a < 0.8, the bubble 
exhibited behaviour similar to that observed near a rigid boundary by migrating to- 
wards the boundary, while for a > 0.8 the bubble moved away. At a = 0.8, the 
bubble remained almost stationary as if it were located in an infinite fluid. To obtain 
these results the Bernoulli pressure term on the inertial boundary was linearized, thus 
restricting the location of the bubble to a t  least one maximum bubble diameter from 
the boundary. Clearly for any realistic simulation of the interaction between a vapour 
bubble and a flexible boundary the nonlinear boundary conditions must be applied. 
To see the importance of the nonlinear terms in the analysis, we compare the linear 
and nonlinear theories for the most trivial flexible boundary, a free surface ! 

Recently Chahine (1977) has carried out a theoretical and experimental study on 
the growth and collapse of a cavitation bubble near a free surface. He suggests that 
the use of the linearized boundary condition in this case is only applicable if the bubble 
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centroid depth h is greater than 2.2Rm, where R, is the maximum ‘radius’ of the 
cavity. The experimental results of Chahine were also particularly interesting. For a 
cavity a sufficient distance away from the free surface, the free surface grows and 
collapses with the bubble growth and collapse; much as one might expect from linear 
theory. However, for the cases in which the bubble centroid depth is approximately 
equal to R,, a completely different phenomenon for the free surface was observed. 
In this case the free surface near the axis of symmetry continues to grow during the 
collapse of the bubble. Furthermore, during the late growth and early collapse phase 
of the bubble life the bubble becomes ‘entrained’ beneath the elevated free surface. 

In this paper we develop an approximate integral-equation approach, along the 
lines of Bevir & Fielding (1974), to model the growth and collapse of a vapour bubble 
near a free surface. In  $ 2 comparisons are made between the linear and nonlinear 
theories. It is clear that the nonlinear Bernoulli pressure term has to be applied on 
both free surfaces. 

As a check on the numerical calculations, conservation of mass, momentum and 
energy are checked a t  each time step. In $ 3, we describe the experimental rig in which 
the growth and collapse phases, including the jet and free surface motion, are recorded 
on a high-speed cine film. In $4 ,  the theoretical predictions and experimental ob- 
servations are compared for several initial centroid positions. Data predicted, recorded 
and compared include bubble shape and centroid position as a function of time, and 
bubble lifetime as a function of initial position of the centroid. In  the final $ 5  the 
main conclusions of this work are summarized and the possible ramifications of the 
work are discussed in relation to flexible boundaries which have both mass and rigidity. 

2. Theory 
As the growth and collapse phases of the vapour bubble and the free-surface plume 

are symmetric, we shall use a cylindrical polar co-ordinate system omitting the angular 
dependence. Thus, as is illustrated in figure 1 (a), we specify the shape of the vapour 
cavity by Nl points (rings) lying on the bubble surface. The free surface is specified in 
a like manner; in this case using N2 points (rings). During the ensuing analysis, we 
shall trace the movement of these particles through the growth and collapse phases 
of the bubble life. In  the calculations, two alternative distributions of points were 
used at  time t = 0, one an equally spaced case and the other a cosine distribution 
which placed more points near the top and bottom of the bubble and near the axis of 
symmetry of the free surface. This latter case was found to be more appropriate, 
providing higher resolution of the bubble and the free surface. In practice we shall 
be tracing the Lagrangian movement of a fluid particle on the bubble surface and on 
the free surface. 

On the other hand, we will use an Eulerian description for the general fluid motion. To 
simulate the fluid motion, we shall assume the fluid is inccmpressible and inviscid. 
Thus we will be neglecting viscous forces - the Reynolds numbers are 0(104), so 
viscous effects will be restricted to a thin boundary layer around the bubble. Surface- 
tension forces can also be neglected but they may be important, initially when the 
bubble is small and late in the collapse phase after the jet has formed. Gravitational 
forces are also neglected because cavitation bubbles are usually small and have a very 
short life, so that buoyancy effects are small. This is not the case in our experiments, 
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FIQURE 1. (a) The surface specification. (b)  The singularity distribution used in the 

numerical model of vapour bubble and free surface interaction. 

where large, slowly pulsating bubbles are studied and similitude is achieved by 
conducting the experiments under free-fall conditions. 

With these assumptions we may represent the velocity as the gradient of a potential 
which in turn, because of the incompressibility of the fluid, satisfies Laplace’s equation. 
That is 

where u is the Cartesian velocity vector and qi is the potential. The conditions at  
infinity are 

u = vqi, v=qi= 0, (1) 

u + O  and p + p m ,  (2) 
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where p is the pressure and p a  is the constant pressure a t  infinity and on the free 
surface. The kinematic and dynamic boundary conditions on the cavity surface are 

u, = u and p = p c ,  (3) 

where u, is the velocity of a particle on the surface and pc is the assumed constant 
saturated vapour pressure in the cavity. Applying the Bernoulli condition we obtain 

(4) 
aq5 

Pc = P m - P x - i P u 2 ,  

where p is the fluid density. 
On the free surface, we shall use one of two conditions, depending on whether we 

use the linear or nonlinear dynamic boundary condition. In  the linear case, the inte- 
grated form of the boundary condition yields 

q5=0 on x = O .  (5a )  

In the nonlinear case, we equat,e the Bernoulli pressure to the pressure at  infinity (i.e. 
on the free surface), in 

- + Q u 2  = 0 on x = [ ( r , t ) ,  
at 

where C(r, t )  is the location of the free surface with positive values being into the fluid. 
The kinematic condition on the free surface in an Eulerian description is the usual 

( 5 b )  
aq5 

Dt 

In the Lagrangian description the velocity of a fluid particle on the free surface is 
taken as the free-surface velocity. 

The initial conditions on the free surface are that 5 = 0 and q5 = 0 while on the 
cavity we use a small sphere of radius R, with a potential derived previously in Gibson 
& Blake (1980) and given by the formula 

Here R, is the maximum bubble size which is controlled by pm,pc and the initial 
kinetic energy of the fluid. This is exactly the potential one would obtain for a cavity 
in an infinite fluid. This is a justifiable approximation in that, at  t = 0, the position 
of the bubble centroid h is taken to be much greater than the initial radius R,. Both 
the linear and nonlinear problems are now well-posed; the approximate method of 
solution will now be described. 

We derive the time-dependent solution via an approximate integral-equation 
approach similar to that suggested by Bevir & Fielding (1974). The approach used 
was a line distribution of appropriate singularities along the axis wholly inside the 
cavity. In the problem discussed in this paper, we find that discrete ring distributions 
of singularities are physically more appropriate than the line distribution approach 
and we can choose the distribution such that the mass flux (i.e. essentially the source 
strength) through the frustrum adjacent to the ring source is approximately constant 
and hence computationally desirable. 
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Thus we define the potential as the sum of a finite number of ring sources as follows: 

where 
G(x ,  r ;  Ei,  r i )  = - ri K ( k ) / n r , ,  k2 = 1 - rf /r i ,  (9a, b )  

(9c, 4 
and where (&, qi) are located on a surface S‘ inside the bubble surface S ( 1  < i 6 Ml) 
or on Z’, a surface exterior to the free surface C (Ml < i 6 M ) .  In the calculations, the 
points on the surface S were usually taken a t  the half radius while the points on X’ 
are 0.25Rm above the free surface. Here K ( k )  is a complete elliptic integral of the first 
kind (Abramowitz & Stegun 1965). For the linearized free-surface example we can 
omit the distribution over Z’ and use the Green’s function that identically satisfies the 
boundary condition (6 a)  as follows : 

Tf = (z - &)2 + ( r  - V i ) 2 ,  rg = (x - &)2 + (r + r$, 

GL(x,r ;E,q)  = Cf(x,r,t,r)-G(x,r; -597). (10) 

Initially, and at  each successive time step, we know, or can calculate, the potential 
#i at each ‘marked ’ point (xi, ri) ( j  = 1, N = Nl + N,) on the vapour cavity and on the 
free surface. By substitution of these values into (8), we obtain the following set of 
linear equations for the unknown source distributions mi (i = 1, M )  

If M = N in (1 1 a) ,  we may solve for mi via collocation ; however, more commonly 
a least-squares approach was used to derive mi. In this latter case, we often used 
Ml = M2 = 1 1  and N .  = 31 and N, = 21, which had the advantage of smoothing the 
potential distribution on both the vapour cavity and the free surface. With knowledge 
of the source distribution, we may now calculate the particle velocities as follows, 

and 

Immediately, we can use a simple Euler scheme to calculate the next position of the 
particle, a time At later, 

xi(t + At) = xi ( t )  + uj(t) At + O(At2), ri(t + At) = ri(t) + vi(t) At + 0(At2), ( 1 3 ~ ,  b )  

where j = 1 ,  N .  The potential # is a function of both position and time, and therefore, 
in updating the potential, we need to use the material derivative 

= #i(t) + - + u2 At + O(At2).  [Z ] 
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Conveniently the Bernoulli pressure conditions on the vapour cavity (4) and the free 
surface ( 5 b )  can be used to eliminate the i?#/i?t term as follows. 

On the vapour cavity we obtain 

while on the free surface 

di(t + At) = dr(t)  + $U2At + O(At2), N1 < j < N .  (15b) 

The time increment At is carefully chosen so that the potential can only change by at 
most a specified fixed amount of A#. Thus by using (13a, b )  we can update the boun- 
dary shape while (15a, b ) .  are used to update the surface potentials. The approximate 
method of solution described above was used to simulate the growth and collapse 
phases of the bubble. 

A t  each time step conservation of mass, momentum and energy were checked to 
see that the variation was within specified bounds (usually less than 2 yo). Conser- 
vation of mass yields the following integral and algebraic relations: 

Conservation of momentum, after appropriate rearrangement and integration, yields 
a Kelvin-impulse-type term I defined as follows (Wu 1976; Blake & Cerone 1981) 

where 

Blake & Cerone (1981) showed that, for the linearized free-surface example, the z- 
component of F, was greater than zero for all time, in other words I, is a non-decreasing 
vector function of time, directed away from the free surface (with x positive into the 
liquid). 

The sum of the total kinetic and potential energies must be a constant E,  for all 
time : 

The kinetic energy T can 
bubble and free surface, 

The potential energy v is 

E = F +  v = E,. (19) 

be evaluated in terms of the following integrals over the 

equal to the volume V of the bubble multiplied by the 
pressure difference (po3 -pc), i.e. 

v = (Pm-Pc) V .  

Maximum bubble radius is defmed in terms of the maximum volume of the spherical 
vapour cavity in an infinite fluid. In this case all the kinetic energy is converted into 
potential energy. However, when flexible boundaries are present, considerable kinetic 
energy may remain in the fluid even when the bubble has reached maximum size. 
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FIQURE 2. (a) The theoretical collapse shape of a bubble grown from rest at y = 2, for nonlinear 
(-) and linear (- - -) boundary conditions on the free surface (at dinlensionless times (1)  
0.78, (2) 1.20, (3) 1.48). (b )  Theoretical free-surface shape during the collapse of a bubble for 
nonlinear (--) and linear (- - -) theories, as in ( a )  (at dimensionless times ( 1 )  0.78, (2) 1.20. 
(3) 1.48). Note 5 times magnification of vertical scale. 

This is clearly apparent by the continued motion of the free surface. The effect becomes 
more pronounced the closer the bubble is brought to the free surface. Illustrations of 
this will be presented later. 

In carrying out the computations it was more convenient to specify the problem in 
terms of dimensionless variables. Following Gibson & Blake (1980), linear dimensions 
are made dimensionless with respect to maximum bubble size R,. Thus the axial 
co-ordinate x and radial co-ordinate r ,  together with the initial distance between the 
vapour bubble centroid and the free surface h, on being made dimensionless now 
become 

X = x/Rm, R = r/Rm, y = h/R,. (22) 
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In  the above and following notation, capitals imply dimensionless variables except y 
which specifies the initial location of the bubble centroid. A characteristic collapse 
velocity is ((pm -pc)/p)+, which allows the definition of a time unit and hence a dimen- 
sionless time T as follows, 

, T = t / t * .  (23) 

It is also convenient to  scale the pressure such that it is zero inside the cavity and one 
a t  infinity by the following rearrangement, 

P = (I, -Pc)/(Pm -PA- (24) 

In $4, theoretical and experimental results will be compared. In the remainder of 
this section we shall compare the linear and nonlinear theories a t  y = 2.0 which 
according to Chahine (1977) is at the very limit of the validity of linearized boundary 
conditions on the free surface. In  the calculations, the dimensionless time increment 
AT is varied, depending on the change in potential on the bubble surface. Typically 
it varies from 
when the bubble is near maximum size. Illustrations of the impulse and energy cal- 
culations will also be discussed along with the potential deficit at  maximum bubble 
growth. 

In figure 2(a), the theoretical growth and collapse phases of a vapour bubble, 
initially a t  y = 2-0, for the linear and nonlinear theories are compared for dimension- 
less times T = 0.78, 1.20 and 1-48. The shapes of the bubble from both theories are 
almost identical during the growth phase ( l ) ,  but during the collapse phase the linear 
theory is slightly faster (2-3) than the nonlinear model. However, if we calculate the 
shape of the free surface in the linear theory from the boundary condition 

when the bubble is small and growing rapidly through to 2.5 x 

ac c(t + At)  = c(t)  +- At + O(At2),  at 

and compare this value with the nonlinear predictions, a marked difference between 
their behaviour occurs. These differences are illustrated in figure 2(b). During the 
growth phase of the bubble the free-surface-shape predictions are relatively similar 
for both theories (note that the vertical scale is magnified by 5 ) ;  however, during the 
collapse phase there is a profound difference in the shapes. When the bubble begins 
to collapse, the linear theory demands that the free surface must also collapse corres- 
ponding to a change from a source to a sink behaviour of the bubble. Tbis is not the 
case for the nonlinear boundary condition, in which case the surface develops a marked 
hump near theaxis of symmetry (3). It will be seen in 4 that, for smaller values of y, 
the free surface continues to extend along the axis of symmetry developing into a 
pronounced spike. 

Evaluation of (20) and (21) yields the kinetic and potential energies respectively. 
These components are plotted as functions of the dimensionless time T in figure 3 (a).  
Initially the total energy is entirely kinetic energy but as the bubble grows there is a 
gradual change to potential energy reaching a maximum when the bubble is largest, 
which corresponds approximately to the half-life time of the bubble. The interesting 
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0.5 1 .o 1.5 
T 

7 
FIGURE 3. (a) The kinetic energy and potential energy v in the liquid during the theoretical 
growth and collapse of a bubble generated at y = 2. (b)  The effect of free-surface proximity on 
the residual kinetic energy !& in the liquid when the bubble ha.s reached maximum volume. 
Note that the total energy in the fluid is approximately E,  = 4.2. 

feature of this free-surface case is that at maximum bubble size there exists a residual 
kinetic energy pR in the fluid, its magnitude depending on the initial location of the 
bubble, y. This is illustrated in figure 3 ( b ) ,  where we can observe a steep rise in the 
residual kinetic energy pR as y decreases. 

In figure 4, the Kelvin impulse as calculated by evaluation over the bubble surface 
I, (in equation (17) we actually need only evaluate the 2-component) is compared 
against the evaluation over the free surface I, (1 8). It is easier to illustrate the varia- 
tion between I, and I, by plotting the difference e = I, - I, as a function of the dimen- 



Growth of a vapour cavity near a free surface 133 

0.2 

I 

0.1 

I /  E = lo - I ,  

0 .o 

Time 
FIGTJRE 4. Calculations of Kelvin impulse on the bubble surface and 

the free surf- (7 = 2). 

sionless time T. The signof the impulse is positive, in contrast to arigid boundary which 
has a negative sign; further discussions on the importance of the impulse can be found 
in Blake & Cerone (1981). Near the half-life time the impulse curve is flat, correspond- 
ing to a zero growth rate (i.e. zero source strength) of the bubble. At large times 
(T > 1.6) E begins to increase rapidly, so the calculation is terminated. 

Further examplesof these calculations are shown in 0 4 where the predicted behaviour 
is compared against observation; the details of the experiments and apparatus being 
described in the next section. 

3. Experimental apparatus and techniques 
The apparatus used in these experiments is similar to that of Benjamin & Ellis 

(1966) and Gibson (1972). The central part is a 370 mm deep, 260 mm internal dia- 
meter, Perspex tank, filled with distilled water to a height of 213 mm. The water is 
degassed by evacuating the tank and shaking it vigorously in a vertical direction for 
about half an hour. A high-voltage spark probe, that can be traversed along the centre- 
line, extends into the tank from the floor. A 26 mm fine wire square measurement scale 
is attached to the probe beneath the spark gap. The scale, the probe and the water 
surface are viewed through a flat 26 mm thick Perspex window recessed into the 
sidewall of the tank. 

The tank is mounted on a horizontal platform suspended between vertical guide 
rails by an electromagnet. A HYCAM high-speed cine camera, fitted with a half- 
frame 16 mm prism, and a PAL, 2.4 kW, continuous light source are also mounted 
on the platform. The vapour bubble is generated by an electric spark discharged 
from a 0.26 ,uF condenser at  8500 V. The bubble is illuminated from behind by the 
light source and photographed at  a rate of approximately 11 000 frames s-l by the 
cine camera. 
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Water 
temperature 

18.5 
17.3 
17.3 
18.3 
18.5 
18.0 

("C) 

Tank 
pressure 

(kPa) 
6.93 
6.93 
6.93 
6-61 
6 93 
6.67 

Spark gap 
depth h 
(mm) 

40 
30 
20 
20 
10 
10 

Maximum bubble 
radius R, 

(mm) 
17.5 
17.9 
17.2 
20.3 
17.9 
20.5 

TABLE 1, Experimental conditions for vapour-bubble experiment,s 

2.0 

.* B 

.- 8 
5 
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3 1.0 

s e 
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a 
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0 1 .o 2.0 
Distance from free surface, 7 

FIQURE 5. The effect of a free surface on vapour-bubble pulsation time (-, theory; 
0, experiment; - - -, infinite liquid limit). 

In  order to study relatively large, slowly pulsating bubbles without buoyancy 
affecting their motion, the experiments are performed with the tank in free fall. 
Each experiment follows a similar pattern. The spark probe is set a t  a prescribed depth 
h beneath the free surface, the tank pressure is reduced to about 7 kPa, and the 
camera set in motion. When the camera accelerates to the desired framing rate it 
triggers the spark and releases the electromagnet. The platform then falls from a 
state of rest while the bubble grows and collapses, and the camera records its motion. 
After development the film negative is analysed on a standard microfiche reader 
with a 24: 1 magnification. 

4. Results and discussion 
Our numerical model of the bubble and free-surface motion, with the nonlinear 

free-surface boundary condition has been compared with experimental bubbles 
generated under the conditions shown in table I .  

For the purpose of comparison, pe was equated with the saturation vapour pressure 
of water, p a  was equated with the tank pressure above the water and R, was equated 
with half the maximum horizontal width of the experimental bubble. 
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FIGURE 6. Motion of bubble centroid during growth and collapse of a vapour bubble near a free 
surface. - , theory; experiment: 0 ,  y = 0.49; A, y = 0.56; ., = 0.98; +, Y = 1.17; 
v ,  = 1.68; *, = 2.26. 

Figure 5 compares theoretical estimates and experimental measurements of the 
bubble pulsation time as a function of initial distance from the free surface. There is 
good agreement down to y = 1, at which stage the numerical model becomes in- 
accurate relatively early in the collapse. Figure 6 shows the centroid motion of the six 
experimental bubbles and theoretical estimates of the first four described in table 1.  
Again agreement between theory and experiment is satisfactory. The key features are 
that the slight early motion towards the free surface during the expansion is completely 
outweighed by subsequent movement away during the collapse. 

Figures 7 and 8 compare theoretical and experimental bubble and free-surface 
interactions for y = 1-68 and 0.98 respectively. It is not possible to compare the 
bubble shapes at exactly the same time because of the different discrete time incre- 
ments used in theory and experiment. In the first case ( y  = 1.68) the bubble remains 
remarkably spherical throughout the expansion and there is only a small hump 
formed on the free surface. During the collapse, downward migration of the centroid 
is clearly evident, the free surface subsides and the bubble becomes involuted from 
above; the theoretical model breaks down at the time that the jet is about to form in 
the bubble. In  the second case (y = 0.98) the bubble becomes elongated along the axis of 
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(a) Theory 

6 
1 
8 
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1 10 

4 
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I I 

6 
1 
8 

1 
2 
3 9 
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4 10 
5 11 

I 1 

Expansion Collapse , 

FIGURE 7. Comparison of t,heory with experiment for the growth and collapse of a 
vapour bubble near a free surface (y  = 1.68). 

Contourno. ... 1 2 3 4 5 6 7 8 9 10 11 

Time (theory) 0.107 0-198 0.298 0.398 0.623 0.823 1.023 1.223 1.432 1.539 - 
Time (exp't) 0.102 0.205 0.307 0.410 0.615 0.820 1.025 1.230 1.434 1.537 1.609 

symmetry during the expansion and causes a substantial free-surface hump. During 
the collapse the hump evolves into a sharp spike that continues to advance along the 
axis of symmetry, while contracting in width at the base. Thus, on the axis of symmetry, 
during the collapse, theory predicts and experiment shows that the free surface and 
the adjacent bubble-surface motions are completely out of phase. 

When making this comparison a small, but consistent, difference was observed 
between theoretical and experiment,al free-surface shapes. This proved to be an 
optical illusion caused by the different refractive indices of the gas and liquid in the 
tank. The free-surface image is contracted linearly by about 3 % in comparison to the 
bubble image. 

A striking free-surface bubble interaction is shown clearly in figure 9 and figure 10. 
In this case the bubble was generated at a value of y = 0.56. The theoretical model 
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(a) Theory 

I 

(b)  Experiment 

I 

Expansion collapse 

FIQURE 8. Comparison of theory with experiment for the growth and collapse of a 
vapour bubble near a free surface (y  = 0.98). 

Contourno. ... 1 2 3 4 6 6 7 8 9 10 11 12 13 

Time (theory) 0.088 0.172 0.263 0.338 0.513 0.688 0.863 1.037 1.212 - - - - 
Time (exp’t) 0.087 0.173 0-260 0.347 0.620 0.604 0.867 1.040 1.214 1.300 1.387 1.474 1.508 

breaks down early in the bubble expansion phase, but our experiment shows the free- 
surface spike developing before the expansion concludes, and continuing to grow to 
quite long and slender proportions in the ensuing bubble collapse. It also shows that 
the bubble is entrained well into the base of the elevated free surface during the 
expansion and then becomes involuted by the formation of a very slender jet that 
moves with great speed down the axis of symmetry in the opposite direction to the 
growing free-surface spike. The jet is disrupted when it strikes the spark probes, but 
it clearly reaches the lower side of the bubble before the collapse is complete. The 
free-surface spike persists throughout the subsequent bubble pulsations, gradually 
becoming narrower. The last frame in figure 10 shows the spike when the torus formed 
by involution of the bubble has reached its minimum size. 
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Expansion Collapse 

FIGURE 9. Experimental growth and collapse of a vapour bubble near a free surface ( y  = 0.56). 

Contourno. ... 1 2 3 4 5 6 7 8 9 10 11 12 

Time (exp’t) 0.048 0.087 0.194 0.291 0.387 0.484 0.581 0.678 0.775 0.872 0.969 1.066 

5. Conclusions 
The approximate integral-equation approach developed here is adequate to des- 

cribe the growth and collapse of a vapour bubble generated at least one maximum 
radius from the free surface. Correct prediction of the bubble and free-surface dis- 
tortion can only be achieved when the complete nonlinear Bernoulli pressure condition 
is applied at the free surface and the bubble surface. It is therefore probable that 
calculations of vapour bubble and flexible boundary interactions will require similar 
precision. 

In the absence of buoyancy effects a vapour bubble may be generated within half 
a maximum radius of the free surface without venting. At its maximum size much of 
the bubble is entrained beneath the elevated free surface, but still a liquid jet forms 
and penetrates the bubble from above. The distortion of the adjacent deformable 
boundary during bubble expansion is significant. It is therefore essential to consider 
the expansion when seeking to describe bubble/flexible-boundary interaction during 
the collapse. 

We wish to acknowledge the contribution of our photographer, Mr Neil Hamilton, 
whose efforts were essential to capture the beauty of this phenomenon. 
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